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THE STICKELBERGER SPLITTING MAP AND EULER

SYSTEMS IN THE K–THEORY OF NUMBER FIELDS

GRZEGORZ BANASZAK* AND CRISTIAN D. POPESCU**

Abstract. For a CM abelian extension F/K of an arbitrary totally real num-
ber field K, we construct the Stickelberger splitting maps (in the sense of [1])

for both the étale and the Quillen K–theory of F and we use these maps to
construct Euler systems in the even Quillen K–theory of F . The Stickelberger
splitting maps give an immediate proof of the annihilation of the groups of
divisible elements divK2n(F )l of the even K–theory of the top field by higher
Stickelberger elements, for all odd primes l. This generalizes the results of
[1], which only deals with CM abelian extensions of Q. The techniques in-
volved in constructing our Euler systems at this level of generality are quite
different from those used in [3], where an Euler system in the odd K–theory
with finite coefficients of abelian CM extensions of Q was given. We work
under the assumption that the Iwasawa µ–invariant conjecture holds. This
permits us to make use of the recent results of Greither-Popescu [16] on the
étale Coates-Sinnott conjecture for arbitrary abelian extensions of totally real
number fields, which are conditional upon this assumption. In upcoming work,
we will use the Euler systems constructed in this paper to obtain information
on the groups of divisible elements divK2n(F )l, for all n > 0 and odd l. It
is known that the structure of these groups is intimately related to some of
the deepest unsolved problems in algebraic number theory, e.g. the Kummer-
Vandiver and Iwasawa conjectures on class groups of cyclotomic fields. We
make these connections explicit in the introduction.

1. Introduction

Let F/K be an abelian CM extension of a totally real number field K. Let
f be the conductor of F/K and let Kf/K be the ray–class field extension with
conductor f . Let Gf := G(Kf/K). For all n ∈ Z≥0, Coates [10] defined higher
Stickelberger elements Θn(b, f) ∈ Q[G(F/K)], for integral ideals b of K coprime
to f . Deligne and Ribet [12] proved that Θn(b, f) ∈ Z[G(F/K)], if b is also coprime
to wn+1(F ) := cardH0(F,Q/Z(n + 1)). A detailed discussion of the Stickelberger
elements and their basic properties is given in §2 below. In 1974, Coates and Sinnott
[11] formulated the following conjecture.

Conjecture 1.1 (Coates-Sinnott). For all n ≥ 1 and all b coprime to wn+1(F ),
Θn(b, f) annihilates K2n(OF ).

This should be viewed as a higher analogue of the classical conjecture of Brumer.
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Conjecture 1.2 (Brumer). For all b coprime to w1(F ), Θ0(b, f) annihilates

K0(OF )tors = Cl(OF ).

Coates and Sinnott [11] proved that for the base field K = Q the element Θ1(b, f)
annihilates K2(OF ) for F/Q abelian and b coprime to the order of K2(OF ). More-
over, in the case K = Q, they proved that Θn(b, f) annihilates the l–adic étale
cohomology groups H2(OF [1/l],Zl(n + 1)) ≃ Ket

2n(OF [1/l]) for any odd prime l,
and any odd n ≥ 1. One of the ingredients used in the proof is the fact that
Brumer’s conjecture holds true if K = Q. This is the classical theorem of Stickel-
berger. The passage from annihilation of étale cohomology to that of K–theory in
the case n = 1 was possible due to the following theorem (see [28], [8] and [9].)

Theorem 1.3 (Tate). The l–adic Chern map gives a canonical isomorphism

K2(OL)⊗ Zl

∼=
−→ Ket

2 (OL[1/l]),

for any number field L and any odd prime l.

The following deep conjecture aims at generalizing Tate’s theorem.

Conjecture 1.4 (Quillen-Lichtenbaum). For any number field L, any m ≥ 1 and

any odd prime l there is a natural l–adic Chern map isomorphism

Km(OL)⊗ Zl

∼=
−→ Ket

m(OL[1/l])(1)

Very recently, Greither and the second author used Iwasawa theoretic techniques
to prove the following results for a general abelian CM extension F/K of an arbi-
trary totally real field K (see [16].)

Theorem 1.5 (Greither-Popescu). Assume that l is odd and the Iwasawa µ–
invariant µF,l associated to F and l vanishes. Then, we have the following.

(1)
∏

l
(1− (l, F/K)−1 ·N l) ·Θ0(b, f) annihilates Cl(OF )l, for all b coprime to

w1(K)l, where the product is taken over primes l of K which divide l and
are coprime to f .

(2) Θn(b, f) annihilates Ket
2n(OF [1/l]), for all n ≥ 1 and all b coprime to

wn+1(F )l.

In fact, stronger results are proved in [16], involving Fitting ideals rather than
annihilators and, in the case n = 0, a refinement of Brumer’s conjecture, known as
the Brumer-Stark conjecture (see Theorems 6.5 and 6.11 in loc.cit.)

Results similar to the Fitting ideal version of part (2) of Theorem 1.5 were also
obtained with different methods by Burns–Greither in [5] and by Nguyen Quang
Do in [19], under some extra hypotheses.

Note that a well known conjecture of Iwasawa states that µF,l = 0, for all l and F
as above. This conjecture is known to hold if F is an abelian extension of Q, due
independently to Ferrero-Washington and Sinnott. Consequently, if the Quillen-
Lichtenbaum conjecture is proved, then, for all odd primes l, the l–primary part of
the Coates-Sinnott conjecture is established unconditionally for all abelian exten-
sions F/Q and for general extensions F/K, under the assumption that µF,l = 0. It
is hoped that recent work of Suslin, Voyevodsky, Rost, Friedlander, Morel, Levine,
Weibel and others will lead to a proof of the Quillen-Lichtenbaum conjecture.
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In 1992, a different approach towards the Coates-Sinnott conjecture was used in
[1], in the case K = Q. Namely, for all n ≥ 1, all b coprime to wn+1(F ), and l > 2,
the first author constructed in Ch. IV of loc.cit. the Stickelberger splitting map
Λ := Λn of the boundary map ∂F in the Quillen localization sequence

0 −→ K2n(OF )l −→ K2n(F )l

∂F−→
Λ
←−

⊕

v

K2n−1(kv)l −→ 0.

By definition, Λ is a homomorphism such that ∂F ◦ Λ is the multiplication by
Θn(b, f). Above, kv denotes the residue field of a prime v in OF .

The existence of such a map Λ implies that Θn(b, f) annihilates the group
div(K2n(F )l) of divisible elements in K2n(F )l (see loc.cit. as well as Theorem
4.23 below.) This group is contained in K2n(OF )l, which is obvious from the exact
sequence above and the finiteness of K2n−1(kv)l, for all v.

The construction of Λ in loc.cit. was done without appealing to étale cohomology
and the Quillen-Lichtenbaum conjecture. However, it was based on the fact that
Brumer’s Conjecture is known to hold for abelian extensions of Q (Stickelberger’s
theorem). Since Brumer’s conjecture was not yet proved over arbitrary totally real
base fields (and it is still not proved unconditionally at that level of generality), the
construction of Λ in loc.cit. could not be generalized. Also, it should be mentioned
that in loc.cit. various technical difficulties arose at primes l|n and the map Λ was
constructed only up to a certain power lvl(n) in those cases.

In 1996, in joint work with Gajda [3], the first author discovered a new, perhaps
deeper and farther reaching application of the existence of Λ for abelian extensions
F/Q. Namely, Λ was used in [3] to construct special elements which give rise to
Euler systems in the K–theory with finite coefficients {K2n+1(L,Z/l

k)}L, where L
runs over all abelian extensions of Q, such that F ⊆ L and L/F has a square-free
conductor coprime to f l. Now, it is hoped that these Euler systems can be used
to study the structure of the group of divisible elements divK2n(F )l, for all n ≥ 1.
This is a goal truly worth pursuing, as this group structure is linked to some of the
deepest unsolved problems in algebraic number theory, as shown at the end of this
introduction.

The main goal of this paper is to generalize the results obtained in [1] and [3]
to the case of CM abelian extensions F/K of arbitrary totally real number fields
K. Moreover, in terms of constructing Euler systems, we go far beyond [3] in that
we construct Euler systems in Quillen K–theory rather than K–theory with finite
coefficients only. Roughly speaking, our strategy is as follows.

Step 1. We fix an integer m > 0 and assume that the m–th Stickelberger ele-
ments Θm(b, fk) annihilate K2m(OFk

)l (respectively Ket
2m(OFk

)l) for each k, where
Fk := F (µlk) and fk is the conductor of Fk/K. Under this assumption, we construct
the Stickelberger splitting maps Λm (respectively Λet

m) for the K–theory (respec-
tively étale K–theory) of Fk, for all k ≥ 1. (See Lemma 4.5 and the constructions
which lead to it.) Note that, if combined with Theorem 1.3, Theorem 1.5 shows
that Θm(b, fk) annihilates K2m(OFk

)l, for m = 1 and l odd, under the assumption
that µF,l = 0 (and unconditionally if F/Q is abelian.) Also, in [20], the first author
constructs an infinite class of abelian CM extensions F/K of an arbitrary totally
real number field K for which the annihilation of K2m(OFk

)l by Θm(b, fk), for
m = 1 and l odd is proved unconditionally.
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Step 2. We use the map Λm (respectively Λet
m)) of Step 1 to construct special el-

ements λv,lk (respectively λ
et
v,lk) in the K–theory with coefficients K2n(OF,Sv ;Z/l

k)

(respectively étale K–theory with coefficients Ket
2n(OF,Sv ;Z/l

k)), for all n > 0, all
k ≥ 0 and all primes v in OF , where Sv is a sufficiently large finite set of primes in
F . (See Definition 4.7 .)

Step 3. We use the special elements of Step 3 and a projective limit process
with respect to k to construct the Stickelberger splitting maps Λn and Λet

n taking
values in K2n(F )l and Ket

2n(F ), respectively, for all n ≥ 1. (See Definition 4.16
and Theorem 4.17.) This step generalizes the constructions in [1] to abelian CM
extensions of arbitrary totally real fields. It also eliminates the extra-factor lvl(n)

which appeared in loc.cit. in the case l|n, for abelian CM extensions of Q.
Step 4. We use the special elements of Step 2 as well as the maps Λn of Step

3 to construct Euler Systems {Λn(ξv(L))}L in the K-theory without coefficients
{K2n(FL)l}L, for every n > 0, where L runs through the squarefree ideals of OF

which are coprime to f l, FL is the ray class field of F corresponding to L and S is
a sufficiently large finite set of primes in OF . (See Definitions 5.4 and 5.5 as well
as Theorem 5.7.) A similar construction of Euler systems in étale K–theory can be
done without difficulty. This step generalizes the constructions of [3] to the case of
abelian CM extensions of totally real number fields. It is also worth noting that
while [3] contains a construction of Euler systems only in the case of K–theory with
coefficients, we deal with both the K–theory with and without coefficients in the
more general setting discussed in this paper.

In the process, as a consequence of the construction of Λn (Step 3), we obtain
a direct proof that Θn(b, f) annihilates the group div(K2n(F )l), for arbitrary CM
abelian extensions F/K of totally real base field K and all n > 0, under the
assumption that l > 2 and µF,l = 0 (see Theorem 4.26.)

In our upcoming work, we are planning on using the Euler systems described in
Step 4 above to study the structure of the groups of divisible elements divK2n(F )l,
for all n > 0 and all l > 2.

We conclude this introduction with a few paragraphs showing that the groups
of divisible elements in the K–theory of number fields lie at the heart of several
important conjectures in number theory, which justifies the effort to understand
their structure in terms of special values of global L–functions. In 1988, Warren
Sinnott pointed out to the first author that Stickelberger’s Theorem for an abelian
extension F/Q or, more generally, Brumer’s conjecture for a CM extension F/K
of a totally real number field K is equivalent to the existence of a Stickelberger
splitting map Λ in the following basic exact sequence

0 −→ O×
F −→ F×

∂F−→
Λ
←−

⊕

v

Z −→ Cl(OF ) −→ 0.

This means that Λ is a group homomorphism, such that ∂F ◦Λ is the multiplication
by Θ0(b, f). Obviously, the above exact sequence is the lower part of the Quillen
localization sequence in K–theory, since K1(OF ) = O

×
F , K1(F ) = F×, K0(kv) = Z,

K0(OF )tors = Cl(OF ) and Quillen’s ∂F is the direct sum of the valuation maps in
this case.

Further, by [2] p. 292 we observe that for any prime l > 2, the annihilation of
div(K2n(F )l) by Θn(b, f) is equivalent to the existence of a “splitting” map Λ in
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the following exact sequence

0 −→ K2n(OF )[l
k] −→ K2n(F )[lk]

∂F−→
Λ
←−

⊕

v

K2n−1(kv)[l
k] −→ div(K2n(F )l) −→ 0

such that ∂F ◦Λ is the multiplication by Θn(b, f), for any k≫ 0. Hence, the group of
divisible elements div(K2n(F )l) is a direct analogue of the l–primary part Cl(OF )l
of the class group. Any two such “splittings” Λ differ by a homomorphism in
Hom(

⊕
v K2n−1(kv)[l

k], K2n(OF )[l
k]). Moreover, the Coates-Sinnott conjecture is

equivalent to the existence of a “splitting” Λ, such that Λ ◦ ∂F is the multiplication
by Θn(b, f). If the Coates-Sinnott conjecture holds, then such a “splitting” Λ is
unique and satisfies the property that ∂F ◦ Λ is equal to the multiplication by
Θn(b, f). This is due to the fact that div(K2n(F )l) ⊂ K2n(OF )l. Clearly, in the
case div(K2n(F )l) = K2n(OF )l, our map Λ also has the property that Λ◦∂F equals
multiplication by Θn(b, f). Observe that if the Quillen-Lichtenbaum conjecture
holds, then by Theorem 4 in [2], we have

div(K2n(F )l) = K2n(OF )l ⇔

∣∣∣∣∣

∏
v|l wn(Fv)

wn(F )

∣∣∣∣∣

−1

l

= 1.

In particular, for F = Q and n odd, we have wn(Q) = wn(Ql) = 2. Hence,
according to the Quillen-Lichtenbaum conjecture, for any l > 2 we should have
div(K2n(Q)l) = K2n(Z)l.

Now, let A := Cl(Z[µl])l and let A[i] denote the eigenspace corresponding to the
i–th power of the Teichmuller character ω : G(Q(µl)/Q)→ (Z/lZ)×. Consider the
following classical conjectures in cyclotomic field theory.

Conjecture 1.6 (Kummer-Vandiver).

A[l−1−n] = 0 for all n even and 0 ≤ n ≤ l − 1

Conjecture 1.7 (Iwasawa).

A[l−1−n] is cyclic for all n odd, such that 1 ≤ n ≤ l − 2

We can state the Kummer-Vandiver and Iwasawa conjectures in terms of divisible
elements in K–theory of Q (see [3] and [4]):

(1) A[l−1−n] = 0 ⇔ div(K2n(Q)l) = 0, for all n even, with 1 ≤ n ≤ (l − 1).
(2) A[l−1−n] is cyclic ⇔ div(K2n(Q)l) is cyclic, for all n odd, with n ≤ (l− 2).

Finally, we would like to point out that the groups of divisible elements discussed
in this paper are also related to the Quillen-Lichtenbaum conjecture. Namely, by
comparing the exact sequence of [24], Satz 8 with the exact sequence of [2], Theorem
2 we conclude that the Quillen-Lichtenbaum conjecture for the K-group K2n(F )
(for any number field F and any prime l > 2) holds if and only if

div(K2n(F )l) = Kw
2n(OF )l

where Kw
2n(OF )l is the wild kernel defined in [2].
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2. Basic facts about the Stickelberger ideals

Let F/K be an abelian CM extension of a totally real number field K. Let f be
the conductor of F/K and let Kf/K be the ray class field extension corresponding
to f . Let Gf := G(Kf/K). Every element of Gf is the Frobenius morphism σa, for
some ideal a of OK , coprime to the conductor f . Let (a, F ) denote the image of σa

in G(F/K) via the natural surjection Gf → G(F/K). Choose a prime number l.

With the usual notations, we let I(f)/P1(f) be the ray class group of fractional
ideals in K coprime to f . Let a and a′ be two fractional ideals in I(f). The symbol
a ≡ a′ mod f will mean that a and a′ are in the same class modulo P1(f). For
every a ∈ I(f) we consider the partial zeta function of [10], p. 291, given by

(2) ζf (a, s) :=
∑

c≡amod f

1

Ncs
, Re(s) > 1,

where the sum is taken over the integral ideals c ∈ I(f) and Nc denotes the usual
norm of the integral ideal c. The partial zeta ζf (a, s) can be meromorphically
continued to the complex plane with a single pole at s = 1. For s ∈ C \ {1},
consider the Sickelberger element of [C], p. 297,

(3) Θs(b, f) := (Nbs+1 − (b, F ))
∑

a

ζf (a,−s)(a, F )−1 ∈ C[G(F/K)]

where b is an integral ideal in I(f) and the summation is over a finite set S of ideals
a of OK coprime to f , chosen such that the Artin map

S −→ G(Kf/K) , a −→ σa

is bijective. The element Θs(b, f) can be written in the following way

(4) Θs(b, f) :=
∑

a

∆s+1(a,b, f)(a, F )−1,

where

(5) ∆s+1(a,b, f) := Nbs+1ζf (a,−s)− ζf (ab,−s).

Arithmetically, the Stickelberger elements Θs(b, f) are most interesting for values
s = n, with n ∈ N ∪ {0}. If a,b, f are integral ideals, such that ab is coprime to
f , then Deligne and Ribet [12] proved that ∆n+1(a,b, f) are l-adic integers for all
primes l 6 |Nb and all n ≥ 0. Moreover, in loc.cit. it is proved that

(6) ∆n+1(a,b, f) ≡ N(ab)n∆1(a,b, f) mod wn(Kf ).

As usual, if L is a number field, then wn(L) is the largest number m ∈ N such that
the Galois group G(L(µm)/L) has exponent dividing n. Note that

wn(L) = |H
0(G(L/L), Q/Z(n))| ,

where Q/Z(n) := ⊕lQl/Zl(n). By Theorem 2.4 of [C], the results in [12] lead to

Θn(b, f) ∈ Z[G(F/K)],

whenever b is coprime to wn+1(F ). The ideal of Z[G(F/K)] generated by the
elements Θn(b, f), for all integral ideals b coprime to wn+1(F ) is called the n-th
Stickelberger ideal for F/K.
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When K ⊂ F ⊂ E is a tower of finite abelian extensions then

ResE/F : G(E/K)→ G(F/K), ResE/F : C[G(E/K)]→ C[G(F/K)]

denote the restriction map and its C–linear extension at the level of group rings,
respectively. If f | f ′ and f and f ′ are divisible by the same prime ideals of OK then,
for all b coprime to f , we have the following equality (see [10] Lemma 2.1, p. 292).

(7) ResK
f′/Kf

Θs(b, f
′) = Θs(b, f).

Let l is a prime ideal of OK coprime to f . Then, we have

(8) ζf (a, s) :=
∑

c≡amod f

l ∤ c

1

Ncs
+

∑

c≡amod f

l | c

1

Ncs
.

Observe that we also have

(9)
∑

c≡amod f

l ∤ c

1

Ncs
=

∑

a′ mod lf

a′≡amod f

∑

c≡a′ mod lf

1

Ncs
=

∑

a′ mod lf

a′≡amod f

ζlf (a
′, s)

Let us fix a finite S of integral ideals a in I(f) as above. Observe that every class
corresponding to an integral ideal a modulo P1(f) can be written uniquely as a
class la′′ modulo P1(f), for some a′′ from our set S of chosen integral ideals. This
establishes a one–to–one correspondence between classes a modulo P1(f) and a′′

modulo P1(f). If l | c, we put c = lc′. Hence, we have the following equality.

(10)
∑

c≡amod f

l | c

1

Ncs
=

1

N ls

∑

c′≡a′′ mod f

1

Nc′ s
=

1

N ls
ζf (a

′′, s)

Formulas (8), (9) and (10) lead to the following equality:

(11) ζf (a, s)−
1

N ls
ζf (l

−1a, s) =
∑

a′ mod lf

a′≡amod f

ζlf (a
′, s).

For all f coprime to l and for all b coprime to lf , equality (11) gives:

(12) ResKlf/Kf
Θs(b, lf) = (1− (l, F )−1N ls)Θs(b, f)

Indeed we easily check that:

ResKlf/Kf
(Nbs+1 − (b, F ))

∑

a′ mod lf

ζlf (a
′,−s)(a′, F )−1 =

(Nbs+1 − (b, F ))
∑

amod f

∑

a′ mod lf

a′≡amod f

ζlf (a
′,−s)(a, F )−1 =

(Nbs+1 − (b, F ))
∑

amod f

(ζf (a,−s)−N lsζf (l
−1a,−s))(a, F )−1 =

(Nbs+1−(b, F ))(
∑

amod f

ζf (a,−s)(a, F )−1−(l, F )−1N ls ζf (l
−1a,−s)(l−1a, F )−1) =
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(1− (l, F )−1N ls)(Nbs+1 − (b, F ))
∑

amod f

ζf (a,−s)(a, F )−1

Lemma 2.1. Let f | f ′ be ideals of OK coprime to b. Then, we have the following.

(13) ResK
f′/Kf

Θs(b, f
′) =

( ∏

l∤f

l | f′

(1− (l, F )−1N ls)
)
Θs(b, f)

Proof. The lemma follows from (7) and (12). �

Remark 2.2. The property of higher Stickelberger elements given by the above
Lemma will translate naturally into the Euler System property of the special ele-
ments in Quillen K–theory constructed in §5 below.

In what follows, for any given abelian extension F/K of conductor f , we consider
the field extensions F (µlk)/K, for all k ≥ 0 and a fixed prime l, where µlk denotes
the group of roots of unity of order dividing lk. We let fk denote the conductor
of the abelian extension F (µlk)/K. We suppress from the notation the explicit
dependence of fk on l, since the prime l will be chosen and fixed once and for all in
this paper.

3. Basic facts about algebraic K-theory

3.1. The Bockstein sequence and the Bott element. Let us fix a prime num-
ber l. For a ring R we consider the Quillen K-groups

Km(R) := πm(ΩBQP (R)) := [Sm, ΩBQP (R)]

(see [21]) and the K-groups with coefficients

Km(R, Z/lk) := πm(ΩBQP (R), Z/lk) := [Mm
lk , ΩBQP (R)]

defined by Browder and Karoubi in [6]. Quillen’s K–groups can also be computed
using Quillen’s plus construction as Kn(R) := πn(BGL(R)+). Any unital homo-
morphism of rings φ : R→ R′ induces natural homomorphisms

φR|R′ : Km(R, ♦) −→ Km(R′, ♦)

where Km(R, ♦) denotes either Km(R) or Km(R, Z/lk).

Quillen K-theory and K-theory with coefficients admit product structures:

Kn(R, ♦)×Km(R, ♦)
∗
−→ Km+n(R, ♦)

(see [21] and [6].) These induce graded ring structures on the groups
⊕

n≥0 Kn(R, ♦).

For a topological space X , there is a Bockstein exact sequence

−→ πm+1(X, Z/lk)
b
−→ πm(X)

lk
−→ πm(X) −→ πm(X, Z/lk) −→

In particular, if we take X := ΩBQP (R)), we get the Bockstein exact sequence in
K-theory given by

(14) −→ Km+1(R, Z/lk)
b
−→ Km(R)

lk
−→ Km(R) −→ Km(R, Z/lk) −→
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For any discrete group G, we have:

πn(BG) =

{
G if n = 1
0 if n > 1.

Consequently, for a commutative group G and X := BG the Bockstein map b gives

an isomorphism b : π2(BG, Z/lk)
∼=
−→ G[lk]. Here, G[m] denotes the m–torsion

subgroup of the commutative group G, for all m ∈ N.

For a commutative ring with identity R we have GL1(R) = R×. Assume that
µlk ⊂ R×. Then R×[lk] = µlk . Let β denote the natural composition of maps:

µlk
b−1

// π2(BGL1(R);Z/lk) // π2(BGL(R);Z/lk)

��
π2(BGL(R)+;Z/lk)

= // K2(R, Z/lk)

We fix a generator ξlk of µlk . We define the Bott element

(15) βk := β(ξlk ), βk ∈ K2(R; Z/lk)

as the image of ξlk via β. Further, we let

β∗n
k := βk ∗ · · · ∗ βk ∈ K2n(R; Z/lk).

The Bott element βk depends of course on the ring R. However, we suppress this
dependence from the notation since it will be always clear where a given Bott
element lives. For example, if φ : R → R′ is a homomorphism of commutative
rings containing µlk , then it is clear from the definitions that the map

φR|R′ : K2(R; Z/lk) −→ K2(R
′, Z/lk)

transports the Bott element for R into the Bott element for R′. By a slight abuse
of notation, this will be written as φR|R′(βk) = βk.

Dwyer and Fiedlander [13] constructed the étale K-theory Ket
∗ (R) and étale

K-theory with coefficients Ket
∗ (R,Z/lk) for any commutative, Noetherian Z[1/l]–

algebra R. Moreover, they proved that if l > 2 then there are natural graded ring
homomorphisms, called the Dwyer-Friedlander maps:

(16) K∗(R) −→ Ket
∗ (R)

(17) K∗(R;Z/lk) −→ Ket
∗ (R;Z/lk).

If R has finite Z/l-cohomological dimension then there are Atiyah-Hirzebruch type
spectral sequences (see [13], Propositions 5.1, 5.2):

(18) Ep,−q
2 = Hp(R;Zl(q/2))⇒ Ket

q−p(R).

(19) Ep,−q
2 = Hp(R;Z/lk(q/2))⇒ Ket

q−p(R;Z/lk).

Throughout, we will denote by rk′/k the reduction maps at the level of coefficients

rk′/k : K∗(R;Z/lk
′

)→ K∗(R;Z/lk),

rk′/k : Ket
∗ (R;Z/lk

′

)→ Ket
∗ (R;Z/lk),

for any R as above and k′ ≥ k.
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3.2. K-theory of finite fields. Let Fq be the finite field with q elements. In [Q3],
Quillen proved that:

Kn(Fq) ≃





Z if n = 0
0 if n = 2m and m > 0
Z/(qm − 1)Z if n = 2m− 1 and m > 0

Moreover, in loc.cit, pp. 583-585, it is also showed that for an inclusion i : Fq → Fqf

of finite fields and all n ≥ 1 the natural map

i : K2n−1(Fq)→ K2n−1(Fqf )

is injective and the transfer map

N : K2n−1(Fqf )→ K2n−1(Fq)

is surjective, where we simply write i instead of iFq|Fqf
and N instead of TrF

qf
/Fq

.

Further (see loc.cit., pp. 583-585), i induces an isomorphism

K2n−1(Fq) ∼= K2n−1(Fqf )
G(F

qf
/Fq)

and the q–power Frobenius automorphism Frq (the canonical generator ofG(Fqf /Fq))
acts on K2n−1(Fqf ) via multiplication by qn. Observe that

i ◦N =

f−1∑

i=0

Friq.

Hence, we have the equalities

KerN = K2n−1(Fqf )
Frq−Id = K2n−1(Fqf )

qn−1

since KerN is the kernel of multiplication by
∑f−1

i=0 qni = qnf−1
qn−1 in the cyclic group

K2n−1(Fqf ). In particular, this shows that the norm map N induces the following
group isomorphism

K2n−1(Fqf )G(F
qf

/Fq)
∼= K2n−1(Fq).

By the Bockstein exact sequence (14) and Quillen’s results above, we observe that

K2n(Fq, Z/l
k)

b
−→ K2n−1(Fq)[l

k]

is an isomorphism. Hence, K2n(Fq, Z/l
k) is a cyclic group.

Let us assume that µlk ⊂ F×
q (i.e. lk | q − 1.) In this case, Browder [6] proved

that the element β∗n
k is a generator of K2n(Fq, Z/l

k). Dwyer and Friedlander [13]
proved that there is a natural isomorphism of graded rings:

K∗(Fq, Z/l
k)

∼=
−→ Ket

∗ (Fq, Z/l
k).

By abuse of notation, let βk denote the image of the Bott element defined in (15)
via the natural isomorphism:

K2(Fq, Z/l
k)

∼=
−→ Ket

2 (Fq, Z/l
k).

Then by Theorem 5.6 in [13] multiplication with βk induces isomorphisms:

× βk : Ki(Fq, Z/l
k)

∼=
−→ Ki+2(Fq, Z/l

k),

× βk : Ket
i (Fq, Z/l

k)
∼=
−→ Ket

i+2(Fq, Z/l
k).

In particular, if lk | q − 1 and α is a generator of K1(Fq, Z/l
k) = K1(Fq)/l

k, then

the element α ∗ β∗n−1
k is a generator of the cyclic group K2n−1(Fq, Z/l

k).
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3.3. K-theory of number fields and their rings of integers. Let F be a
number field. As usual, OF denotes the ring of integers in F and kv is the residue
field for a prime v of OF . For a finite set of primes S of OF the ring of S-integers
of F is denoted OF,S .

Quillen [22] proved that Kn(OF ) is a finitely generated group for every n ≥ 0. Borel
computed the ranks of the groups Kn(OF ) as follows:

Kn(OF )⊗Z Q ≃





Q if n = 0
Qr1+r2−1 if n = 1
0 if n = 2m and n > 0
Qr1+r2 if n ≡ 1 mod 4 and n 6= 1
Qr2 if n ≡ 3 mod 4

We have the following localization exact sequences in Quillen K-theory and K-
theory with coefficients [21].

−→ Km(OF , ♦) −→ Km(F, ♦)
∂F−→

⊕

v

Km−1(kv, ♦) −→ Km−1(OF , ♦) −→

Let E/F be a finite extension. The natural maps in K-theory induced by the
embedding i : F → E and σ : E → E, for σ ∈ G(E/F ), will be denoted for
simplicity by i : Km(F, ♦) −→ Km(E, ♦) and σ : Km(E, ♦) −→ Km(E, ♦).
Observe that i := iF |E and σ := σE|E , according to the notation in section 3.1.

In addition to the natural maps i, σ, ∂F , ∂E , and product structures ∗ for K-theory
of F and E introduced above, we have (see [21]) the transfer map

TrE/F : Km(E, ♦) −→ Km(F, ♦)

and the reduction map

rv : Km(OF,S , ♦) −→ Km(kv, ♦)

for any prime v /∈ S.

The maps discussed above enjoy many compatibility properties. For example, σ is
naturally compatible with i, ∂F , ∂E , the product structure ∗, T rE/F and rw and
rv. See e.g. [1] for explanations of some of these compatibility properties. Let us
mention below two nontrivial such compatibility properties which will be used in
what follows. By a result of Gillet [17], we have the following commutative diagrams
in Quillen K-theory and K-theory with coefficients:

(20) Km(F, ♦)×Kn(OF , ♦)

∂F×id

��

∗ // Km+n(F, ♦)

∂F

��⊕
v Km−1(kv, ♦)×Kn(OF , ♦)

∗ // ⊕
v Km+n−1(kv, ♦)

Let E/F be a finite extension unramified over a prime v of OF . Let w be a prime
of OE over v. From now on, we will write Nw/v := Trkw/kv

. The following diagram
shows the compatibility of transfer with the boundary map in localization sequences
for Quillen K-theory and K-theory with coefficients.
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(21) Km(E, ♦)

TrE/F

��

∂E //
⊕

v

⊕
w | v Km−1(kw, ♦)

⊕
v

⊕
w | v Nw/v

��
Km(F, ♦)

∂F //
⊕

v Km−1(kv, ♦)

where the direct sums are taken with respect primes v in F and w in E, respectively.

4. Construction of Λ and Λet and first applications

In this section, we construct special elements in K-theory and étale K-theory
with coefficients, under the assumption that for some fixed m > 0 the Stickelberger
elements Θm(b, fk) annihilate K2m(OF

lk
) for all k ≥ 0. This will produce special

elements in K-theory and étale K-theory without coefficients which are of primary
importance in our construction of Euler systems given in §5. These constructions
will also give us the Stickelberger splitting maps Λ := Λn and Λet := Λet

n announced
in the introduction. As a byproduct, we obtain a direct proof of the annihilation of
the groups divisible elements div(K2n(F )l), for all n > 0, generalizing the results
of [1].

All the results in this section are stated for both K-theory and étale K-theory.
However, detailed proofs will be given only in the case of K-theory since the proofs
in the case of étale K-theory are very similar. The key idea in transferring the K–
theoretic constructions to étale K–theory is the following. Replace Gillet’s result
[17] for K-theory (commutative diagram (20) of §3) with the compatibility of the
Dwyer-Friedlander spectral sequence with the product structure ([13], Proposition
5.4) combined with Soulé’s observation (see [25], p. 275) that the localization
sequence in étale cohomology (see [25], p. 268) is compatible with the product by
the étale cohomology of OF,S .

4.1. Constructing special elements in K–theory with coefficients. Let L
be a number field, such that µlk ⊂ L. Let S be a finite set of prime ideals of OL

containing all primes over l. Let i ∈ N and let m ∈ Z, such that i+ 2m > 0. Then,
for R = L or R = OL,S there is a natural group isomorphism (see [13] Theorem
5.6):

(22) Ket
i (R;Z/lk)

∼=
−→Ket

i+2m(R;Z/lk)

which sends η to η ∗ β∗m
k for any η ∈ Ket

i (R;Z/lk). If m ≥ 0 this isomorphism is
just the multiplication by β∗m

k . If m < 0 and i + 2m > 0, then the isomorphism

(22) is the inverse of the multiplication by β∗−m
k isomorphism:

(23) ∗ β∗−m
k : Ket

i+2m(R;Z/lk)
∼=
−→ Ket

i (R;Z/lk).

Now, let us consider Quillen K-theory. If m ≥ 0, there is a natural homomorphism

(24) ∗ β∗m : Ki(R;Z/lk)→ Ki+2m(R;Z/lk)

which is just multiplication by β∗m
k . The homomorphism (24) is compatible with

the isomorphism (22) via the Dwyer-Friedlander map. If m < 0 and i + 2m > 0,
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then take the homomorphism

(25) t(m) : Ki(R;Z/lk)→ Ki+2m(R;Z/lk)

to be the unique homomorphism which makes the following diagram commutative.

Ki(R;Z/lk)

��

t(m) // Ki+2m(R;Z/lk)

Ket
i (R;Z/lk)

(∗β∗ −m
k )−1

// Ket
i+2m(R;Z/lk)

OO

The left vertical arrow is the Dwyer-Friedlander map, while the right vertical
arrow is the Dwyer-Friedlander splitting map (see [13], Proposition 8.4.) The
latter map is obtained as the multiplication of the inverse of the isomorphism

Ki′(R;Z/lk)
∼=
−→Ket

i′ (R;Z/lk), for i′ = 1 or i′ = 2, by a nonnegative power of the

Bott element β∗m′

k , with m′ ≥ 0 (see the proof of Proposition 8.4 in [13].)

Remark 4.1. It is clear that the Dwyer-Friedlander splitting from [13], Proposition
8.4 is compatible with the maps Z/lj → Z/lj−1 at the level of coefficients, for all
1 ≤ j ≤ k. Consequently, the map t(m) is naturally compatible with these maps.
In addition, t(m) is naturally compatible with the ring embedding R → R′, where
R′ = L′ or R′ = OL′,S for a number field extension L′/L. Let

tet(m) := (∗ β∗−m
k )−1.

It is clear from the above diagram that t(m) and tet(m) are naturally compatible
with the Dwyer-Friedlander maps.

Lemma 4.2. Let L = F (µlk) and let i > 0 and m < 0, such that i + 2m > 0.
Then, for R = L or R = OL,S, the natural group homomorphisms tet(m) and t(m)
have the following properties:

(26) tet(m)(α)σa = tet(m)(αNa
mσa)

(27) t(m)(α)σa = t(m)(αNa
mσa)

for any ideal a of OF coprime to fk and for α ∈ Ket
i (R;Z/lk) and α ∈ Ki(R;Z/lk),

respectively.

Lemma 4.3. If i ∈ {1, 2}, α ∈ Ki(R;Z/lk) and n+m > 0 then

(28) tet(m)(α ∗ β∗n
k ) = α ∗ β∗n+m

k .

(29) t(m)(α ∗ β∗n
k ) = α ∗ β∗n+m

k .

Proof of Lemmas 4.2 and 4.3. The properties in Lemmas 4.2 and 4.3 follow directly
from the definition of the maps tet(m) and t(m). �

If v is a prime of OL,S , m < 0 and i+ 2m > 0, then we construct the morphism

(30) tv(m) : Ki(kv;Z/l
k)→ Ki+2m(kv;Z/l

k)
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in the same way as we have done forOL,S or L. Namely, tv(m) is the homomorphism
which makes the following diagram commute.

Ki(kv;Z/l
k)

∼=

��

tv(m)// Ki+2m(kv;Z/l
k)

Ket
i (kv;Z/l

k)
(∗β∗ −m

k )−1

// Ket
i+2m(kv;Z/l

k)

∼=

OO

The right vertical arrow is the inverse of the Dwyer-Friedlander map which, in the
case of a finite field, is clearly seen to be equal to the Dwyer-Friedlander splitting
map described above.

Similarly to tet(m) we can construct tetv (m) := (∗ β∗−m
k )−1. We observe that the

maps t(m) and tv(m) are compatible with the reduction maps and the boundary
maps. In other words, we have the following commutative diagrams.

Ki(OL,S; Z/l
k)

t(m)

��

rv // Ki(kv; Z/l
k)

tv(m)

��
Ki+2m(OL,S ; Z/l

k)
rv // Ki+2m(kv; Z/l

k)

Ki(OL,S , Z/l
k)

t(m)

��

∂ // ⊕
v∈S Ki−1(kv; Z/l

k)

tv(m)

��
Ki+2m(OL,S; Z/l

k)
∂ // ⊕

v∈S Ki−1+2m(kv; Z/l
k)

Let us point out that we have similar commutative diagrams for étale K-theory

and the maps tet(m) and tetv (m).

As observed above, the map t(m) for m < 0 has the same properties as the
multiplication by β∗m for m ≥ 0. So, we make the following.

Definition 4.4. For m < 0, we define the symbols

α ∗ β∗m := t(m)(α), αv ∗ β
∗m := tv(m)(αv),

for all α ∈ Ki(OL; Z/l
k) and αv ∈ Ki(kv;Z/l

k)), respectively. For m ≥ 0, the
symbols α ∗ β∗m and αv ∗ β

∗m denote the usual products.

Let m > 0 be a natural number. Throughout the rest of this section we assume
that Θm(b, fk) annihilates K2m(OF

lk
) for all k ≥ 0. For a prime v of OF , let kv be

its residue field and qv the cardinality of kv . Similarly, for any prime w of OF
lk
, we

let kw be its residue field. We put E := Flk . If v 6 | l, we observe that kw = kv(ξlk),
since the corresponding local field extension Ew/Fv is unramified. For any finite
set S of primes in OF and any k ≥ 0, there is an exact sequence (see [22]):

0 −→ K2m(OF
lk
) −→ K2m(OF

lk
, S)

∂
−→

⊕

v∈S

⊕

w|v

K2m−1(kw) −→ 0

Let ξw,k ∈ K2m−1(kw)l be a generator of the l-torsion part of K2m−1(kw). Pick

an element xw,k ∈ K2m(OF
lk

,S)l such that ∂(xw,k) = ξw,k. Obviously, x
Θm(b,fk)
w,k

does not depend on the choice of xw,k since Θm(b, fk) annihilates K2m(OF
lk
). If
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ord(ξw,k) = la, then xla

w,k ∈ K2m(OF
lk
). Hence, (x

Θm(b,fk)
w,k )l

a

= (xla

w,k)
Θm(b,fk) = 0.

Consequently, there is a well defined map:

Λm :
⊕

v∈S

⊕

w|v

K2m−1(kw)l −→ K2m(OF
lk

, S)l,

(31) Λm(ξw,k) := x
Θm(b,fk)
w,k .

If R is either a number field L or its ring of (S, l)–integers OL,S[1/l], for some
finite set S ⊆ Spec(OL), Tate proved in [28] that there is a natural isomorphism:

K2(R)l
∼=
−→Ket

2 (R).

Dwyer and Friedlander [13] proved that the natural maps:

Kj(R;Z/lk)−→Ket
j (R;Z/lk),

are surjections for j ≥ 1 and isomorphisms for j = 1, 2. As explained in [2], for any
number field L, any finite set S ⊂ Spec(OL) and any j ≥ 1, we have the following
commutative diagrams with exact rows and (surjective) Dwyer-Friedlander maps
as vertical arrows.

0 // K2j(OL)l

����

// K2j(OL,S)l

����

∂ //
⊕

v∈S K2j−1(kv)l

∼=

��

// 0

0 // Ket
2j(OL[1/l]) // Ket

2j(OL,S[1/l])
∂et

//
⊕

v∈S Ket
2j−1(kv) // 0

For j = 1, the left and the middle vertical arrows in the above diagram are also
isomorphisms, according to Tate’s theorem. If the Quillen-Lichtenbaum conjecture
holds, then these are isomorphisms for all j > 0.

Our assumption that Θm(b, fk) annihilates K2m(OF
lk
) for all k ≥ 0 implies

that Θm(b, fk) annihilates K
et
2m(OF

lk
[1/l]), for all k ≥ 0. In the diagram above, let

yw,k and ζw,k denote the images of xw,k and ξw,k via the middle vertical and right
vertical arrows, respectively. Then, we define

Λet
m(ζw,k) := y

Θm(b,fk)
w,k .

Clearly, the following diagram is commutative

K2m(OF
lk

,S)l

��

⊕
v∈S

⊕
w|v K2m−1(kw)l

Λmoo

∼=

��
Ket

2m(OF
lk

,S[1/l])
⊕

v∈S

⊕
w|v Ket

2m−1(kw)l
Λet

moo

where the vertical maps are the Dwyer-Friedlander maps.

Lemma 4.5. The maps Λm and Λet
m satisfy the following properties

∂Λm(ξw,k) := ξ
Θm(b,fk)
w,k , ∂etΛet

m(ζw,k) := ζ
Θm(b,fk)
w,k .

Proof. The lemma follows immediately by compatibility of ∂ and ∂et with the
G(E/F ) action. �
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Let us fix an n ∈ N. Let v be a prime in OF sitting above p 6= l in Z. Let
S := Sv be the finite set primes of OF consisting of all the primes over p and all
the primes over l. Let k(v) be the natural number for which lk(v) || qnv − 1. Observe
that if l | qv − 1 then k(v) = vl(qv − 1) + vl(n) (see e.g. [1, p. 336].)

Definition 4.6. As in loc.cit. p. 335, let us define:

γl :=
∏

l 6 | f
l | l

(1− (l, F )−1N ln)−1 =
∏

l 6 | f
l | l

(1 + (l, F )−1N ln + (l, F )−2N l2n + · · · ).

If l| f for every l | l then naturally we let γl := 1. Observe that γl is a well defined
operator on any Zl[G(F/K)]-module which is a torsion abelian group with a finite
exponent.

Definition 4.7. For all k ≥ 0 and E := F (µlk), let us define elements:

λv,lk := TrE/F (Λm(ξw,k) ∗ β
∗n−m
k )Nb

n−mγl ∈ K2n(OF,S ; Z/l
k)).

Similarly, define elements:

λ
et
v,lk := TrE/F (Λ

et
m(ζw,k) ∗ β

∗n−m
k )Nb

n−mγl ∈ Ket
2n(OF,S ; Z/l

k)).

Obviously, λet
v,lk is the image of λv,lk via the Dwyer-Friedlander map.

Let us fix a prime sitting above v in each of the fields F (µlk), such that if k ≤ k′

and w and w′ are the fixed primes in E = F (µlk) and E′ := F (µlk′ ), respectively,
then w′ sits above w. By the surjectivity of the transfer maps for K-theory of finite
fields (see the end of §3), we can associate to each k and the chosen prime w in
E = F (µlk) a generator ξw,k of K2m−1(kw)l and a generator ζw,k of Ket

2m−1(kw)l,
such that

Nw′/w(ξw′,k′) = ξw,k, Nw′/w(ζw′,k′) = ζw,k,

for all k ≤ k′, where w and w′ are the fixed primes in E = F (µlk) and E′ = F (µlk′ ),
respectively.

Lemma 4.8. With notations as above, for every k ≤ k′ we have

rk′/k(Nw′/v(ξw′,k′ ∗ β∗n−m
k′ )) = Nw/v(ξw,k ∗ β

∗n−m
k ),

rk′/k(Nw′/v(ζw′,k′ ∗ β∗n−m
k′ )) = Nw/v(ζw,k ∗ β

∗n−m
k ).

Proof. First, let us consider the case n−m ≥ 0. The formula follows by the compat-
ibility of the elements (ξw,k)w with respect to the norm maps, by the compatibility
of Bott elements with respect to the coefficient reduction map rk′/k(βk′) = βk, and
by the projection formula. More precisely, we have the following equalities:

rk′/k(Nw′/v(ξw′,k′ ∗ β∗n−m
k′ )) = Nw′/v(rk′/k(ξw′,k′ ∗ β∗n−m

k′ )) =

Nw′/v(ξw′,k′ ∗ β∗n−m
k )) = Nw/v(Nw′/w(ξw′,k′) ∗ β∗n−m

k )) =

= Nw/v(ξw,k ∗ β
∗n−m
k ).

Next, let us consider the case n − m < 0. Observe that the Dwyer-Friedlander
maps commute with Nw/v and Nw′/v. Hence we can argue in the same way as in
the case n−m ≥ 0 by using the projection formula for the negative twist in étale
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cohomology, since for any finite field Fq with l 6 | q, we have natural isomorphisms
coming from the Dwyer-Friedlander spectral sequence (cf. the end of §3.1):

(32) Ket
2j−1(Fq) ∼= H1(Fq; Zl(j))

(33) Ket
2j−1(Fq; Z/l

k) ∼= H1(Fq; Z/l
k(j)).

�

Lemma 4.9. For all 0 ≤ k ≤ k′, we have

rk′/k(λv,lk′ ) = λv,lk

rk′/k(λ
et
v,lk′ ) = λv,lk .

Proof. Consider the following commutative diagram:

K2m(OE′,S)

TrE′/E

��

⊕
w′∈S ∂w′

//
⊕

w′∈S K2m−1(kw′)

⊕
w∈S

⊕
w′|w Nw′/w

��
K2m(OE,S)

⊕
w∈S ∂w//

⊕
w∈S K2m−1(kw)

It follows that we have TrE′/E(xw′,k′)Θm(b,fk) = x
Θm(b,fk)
w,k . Hence the case n−m ≥ 0

follows by the projection formula:

rk′/k(TrE′/F (x
Θm(b,fk′)
w′,k′ ∗ β∗n−m

k′ )Nb
n−mγl) =

= TrE/F (TrE′/E(x
Θm(b,fk′)
w′,k′ ∗ β∗n−m

k ))Nb
n−mγl =

= TrE/F (x
Θm(b,fk)
w,k ∗ β∗n−m

k )Nb
n−mγl .

Now, consider the case n − m < 0. We observe that TrE′/E commutes with the
Dwyer-Friedlander map. Hence TrE′/E also commutes with the splitting of the
Dwyer-Friedlander map since the splitting is a monomorphism. By the Dwyer-
Friedlander spectral sequence for any number field L and any finite set S of prime
ideals of OL containing all primes over l, we have the following isomorphism

(34) Ket
2j(OL,S) ∼= H2(OL,S ; Zl(j + 1))

and the following exact sequence

(35) 0→ H2(OL,S; Z/l
k(j + 1))→ Ket

2j(OL,S; Z/l
k)→ H0(OL,S; Z/l

k(j))→ 0.

Since x
Θm(b,fk)
w,k ∈ K2m(OFk,S), its image in Ket

2m(OFk,S ; Z/l
k) lies in fact in in the

ételae cohomology group H2(OFk,S ; Z/l
k(m + 1)). Hence, one can settle the case

n −m < 0 as well by using the projection formula for the étale cohomology with
negative twists. �

Theorem 4.10. For every k ≥ 0, we have

∂F (λv,lk) = N(ξw,k ∗ β
∗n−m
k )Θm(b,f) ,

∂et
F (λet

v,lk) = N(ζw,k ∗ β
∗n−m
k )Θm(b,f) .
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Proof. The proof is similar to the proofs of Theorem 1, pp. 336-340 of [1] and
Proposition 2, pp. 221-222 of [3]. The diagram at the end of §3 gives the following
commutative diagram of K–groups with coefficients

K2n(OE,S ; Z/l
k)

TrE/F

��

∂E //
⊕

v∈S

⊕
w | v K2n−1(kw; Z/l

k)

N

��
K2n(OF,S ; Z/l

k)
∂F // ⊕

v∈S K2n−1(kv, ; Z/l
k)

,

where N :=
⊕

v

⊕
w | v Nw/v. Hence we have ∂F ◦ TrE/F = N ◦ ∂E . The compati-

bilities of some of the natural maps mentioned in §3 which will be used next can
be expressed via the following commutative diagrams, explaining the action of the
groups G(E/K) and G(F/K) on the K–groups with coefficients in the diagram
above. For j > 0 we use the following commutative diagram.

K2j(OE,S ; Z/l
k)

σ−1
a

��

rw // K2j(kw; Z/l
k)

σ−1
a

��
K2j(OE,S ; Z/l

k)
r
wσ

−1
a // K2j(kwσ

−1
a

; Z/lk)

The above diagram gives the following equality:

(36) r
wσ

−1
a

(β∗n−m
k ) = r

wσ
−1
a

((β∗ n−m
k )Na

n−mσ−1
a ) = (rw(β

∗n−m
k ))Na

n−mσ−1
a .

For any j ∈ Z, we have the following commutative diagram:

H0(OE,S ; Z/l
k(j))

σ−1
a

��

rw // H0(kw; Z/l
k(j))

σ−1
a

��
H0(OE,S ; Z/l

k(j))
r
wσ

−1
a // H0(k

wσ
−1
a

; Z/lk(j))

If ξlk := exp(2 π i
lk

) is the generator of µlk then the above diagram gives

(37) r
wσ

−1
a

(ξ⊗n−m
lk

) = r
wσ

−1
a

(ξ⊗n−m
lk

)Na
n−mσ−1

a ) = (rw(ξ
⊗n−m
lk

))Na
n−mσ−1

a .

We can write the m–th Stickelberger element as follows

(38) Θm(b, fk) =
∑

amod fk

′




∑

cmod fk, w
σ
c−1=w

∆m+1(ac,b, f)σc−1



 · σa−1 ,

where
∑′

amod fk
denotes the sum over a maximal set S of ideal classes a mod fk,

such that the primes wσ−1
a , for a ∈ S, are distinct. By formula (6), for every m ≥ 1

and n ≥ 1 we have

∆n+1(a,b, f) ≡ Nan−m Nbn−m∆m+1(ac,b, f) mod wmin {m,n}(Kf ).

It is clear that for allm,n ≥ 1 we get the following congruence mod wmin {m,n}(Kfk
).

Θn(b, fk) ≡
∑

amod fk

′
(

∑

cmod fk, w
σ
c−1=w

Nan−m Ncn−m Nbn−m ∆m+1(ac,b, fk)σc−1 )σa−1
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Equalities (36), (37), (38), Lemma 4.2, Gillet’s result [17] (diagram (20)), the com-
patibility of t(n−m) and tv(n−m) with ∂ and the above congruences satisfied by
Stickelberger elements lead in both cases n−m ≥ 0 and n−m < 0 to the following
equalities.

∂E(x
Θm(b,fk)
w,k ∗ β∗n−m

k )Nb
n−m

=

=
∑

amod fk

′
ξ

∑
cmod fk,w

σ
c−1 =w

∆m+1(ac,b,fk)σ(ac)−1

w,k ∗ (β∗n−m
k )(Nac)n−mNb

n−mσ(ac)−1 =

= (ξw,k ∗ β
∗n−m
k )

∑′
amod fk

∑
cmod fk,w

σ
c−1 =w

∆m+1(ac,b,fk)(Nac)n−mNb
n−mσ(ac)−1

=

= (ξw,k ∗ β
∗n−m
k )Θn(b,fk).

By the first commutative diagram of this proof, the equalities above and Lemma
2.1, we obtain:

∂F (λv,lk) = N(∂E(x
Θm(b,fk)
w,k ∗ β∗n−m

k )Nb
n−m

)γl = N((ξw,k ∗ β
∗n−m
k )Θn(b,fk))γl =

= (N(ξw,k ∗ β
∗n−m
k ))γl

−1Θn(b,f)γl = (N(ξw,k ∗ β
∗n−m
k ))Θn(b,f).

�

Theorem 4.11. For every v such that l | qnv − 1 and for all k ≥ k(v), there are

homomorphisms

Λv, lk : K2n−1(kv; Z/l
k)→ K2n(OF,S ; Z/l

k),

Λet
v, lk : Ket

2n−1(kv; Z/l
k)→ Ket

2n(OF,S ; Z/l
k) :

which satisfy the following equalities:

Λv, lk (N(ξw,k ∗ β
∗n−m
k )) = λv,lk ,

Λet
v, lk (N(ζw,k ∗ β

∗n−m
k )) = λ

et
v,lk .

Proof. The definition of Λm (see (31)), combined with the natural isomorphism
K2m−1(kw)/l

k ∼= K2m−1(kw;Z/l
kZ) and the natural monomorphism

K2m(OE,S)/l
k → K2m(OE,S ;Z/l

kZ),

coming from the corresponding Bockstein exact sequences, leads to the following
homomorphism:

Λ̃m : K2m−1(kw;Z/l
kZ)→ K2m(OE,S ;Z/l

kZ).

Multiplying on the target and on the source of this homomorphism with the n−m
power of the Bott element if n−m ≥ 0 (resp. applying the map tw(n−m) to the
source and t(n − m) to the target if n − m < 0) under the observation that the
following map is an isomorphism:

K2m−1(kw;Z/l
kZ) ∼

∗β∗n−m
k // K2n−1(kw;Z/l

kZ)

(cf. the notation of t(j) and tw(j) ) show that there exists a unique homomorphism

Λ̃m ∗ β
∗n−m
k : K2n−1(kw; Z/l

k)→ K2n(OE,S ; Z/l
k),
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sending ξw,k ∗β
∗n−m
k → x

Θm(b,fk)
w,k ∗β∗n−m

k . Next, we compose the homomorphisms

Λ̃m ∗ β
∗n−m
k defined above and

TrE/F : K2n(OE,S ; Z/l
k)→ K2n(OF,S ; Z/l

k)

to obtain the following homomorphism:

TrE/F ◦ (Λ̃m ∗ β
∗n−m
k ) : K2n−1(kw; Z/l

k)→ K2n(OF,S ; Z/l
k) .

We observe that this homomorphism factors through the quotient of G(kw/kv)–
coinvariants

K2n−1(kw; Z/l
k)G(kw/kv) := K2n−1(kw; Z/l

k)/K2n−1(kw; Z/l
k)Frv−Id,

where Frv ∈ G(kw/kv) ⊆ G(E/F ) is the Frobenius element of the prime w
over v. Since Frv acts via qnv –powers on K2n−1(kw), the canonical isomorphism
K2n−1(kw ; Z/l

k) ∼= K2n−1(kw)/l
k (see §3) and assumption k ≥ k(v) give

K2n−1(kw; Z/l
k)G(kw/kv)

∼= K2n−1(kw; Z/l
k)/lk(v) ∼= K2n−1(kw)/l

k(v).

The obvious commutative diagram with surjective vertical morphisms (see §3)

K2n−1(kw)/l
k

Nw/v

��

∼= // K2n−1(kw; Z/l
k)

Nw/v

��
K2n−1(kv)/l

k
∼= // K2n−1(kv; Z/l

k)

combined with the last isomorphism above, gives an isomorphism

K2n−1(kw; Z/l
k)G(kw/kv)

Nw/v

∼
// K2n−1(kv; Z/l

k)

Now, the required homomorphism is:

(39) Λv, lk : K2n−1(kv; Z/l
k) // K2n(OF,S ; Z/l

k)

defined by

Λv, lk(x) := [TrE/F ◦ (Λ̃m ∗ β
∗n−m
k ) ◦Nw/v

−1(x)]Nb
n−mγl ,

for all x ∈ K2n−1(kv; Z/l
k). By definition, this map sends N(ξw,k ∗ β

∗n−m
k ) onto

the element λv,lk := TrE/F (x
Θm(b,fk)
w,k ∗ β∗n−m

k )Nb
n−mγl . �

4.2. Constructing Λ and Λet for K–theory without coefficients. Let us fix
n > 0. In this section, we use the special elements and λv,lk and λ

et
v,lk defined

above to construct the maps Λn and Λet
n for the K–theory (respectively étale K–

theory) without coefficients. Since n is fixed throughout, we will denote Λ := Λn

and Λet := Λet
n .

Observe that for every j > 0 and every prime l, the Bockstein exact sequence (14)
and results of Quillen [22], [23] give natural isomorphisms

(40) Kj(OF,S)l ∼= lim
←−
k

Kj(OF,S ; Z/l
k),

(41) Kj(kv)l ∼= lim
←−
k

Kj(kv; Z/l
k) .
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Similar isomorphisms hold for the étale K-theory.

Definition 4.12. We define λv ∈ K2n(OF,S)l and λ
et
v ∈ Ket

2n(OF,S) to be the
elements corresponding to

(λv,lk)k ∈ lim
←−
k

K2n(OF,S ; Z/l
k), (λet

v,lk)k ∈ lim
←−
k

Ket
2n(OF,S ; Z/l

k)

via the isomorphism (40) and its étale analogue, respectively.

Definition 4.13. We define ξv ∈ K2n−1(kv)l and ζv ∈ Ket
2n−1(kv) to be the ele-

ments corresponding to

(N(ξw,k ∗ β
∗n−m
k ))k ∈ lim

←−
k

K2n−1(kv; Z/l
k),

(N(ζw,k ∗ β
∗n−m
k ))k ∈ lim

←−
k

Ket
2n−1(kv; Z/l

k),

via the isomorphism (41) and its étale analogue, respectively.

Definition 4.14. Assume that l | qnv − 1. Since the homomorphisms Λv, lk , and
Λet
v, lk , from Theorem 4.11, are compatible with the coefficient reduction maps rk′/k,

for all k′ ≥ k ≥ k(v), we can define homomorphisms

Λv := lim
←−
k

Λv, lk : K2n−1(kv)l → K2n(OF,S)l →֒ K2n(F )l,

Λet
v := lim

←−
k

Λet
v, lk : Ket

2n−1(kv)→ Ket
2n(OF,S) →֒ Ket

2n(F )l,

for all v. Here, the rightmost arrows are the inclusions K2n(OF,S) ⊂ K2n(F ) and
Ket

2n(OF,S) ⊂ Ket
2n(F )l, respectively. If l ∤ qnv − 1, then the morphisms Λv and Λet

v

are trivial, by default.

Remark 4.15. It is clear from Theorem 4.11 that, for all v, we have

Λv(ξv) = λv, Λet
v (ζv) = λ

et
v .

Definition 4.16. We define the maps Λn and Λet
n as follows:

Λ :
⊕

v

K2n−1(kv)l → K2n(F )l, Λ :=
∏

v

Λv.

Λet :
⊕

v

Ket
2n−1(kv) → Ket

2n(F )l, Λet :=
∏

v

Λet
v .

Theorem 4.17. The maps Λ and Λet satisfy the following properties:

∂F ◦ Λ(ξv) = ξΘn(b,f)
v ,

∂et
F ◦ Λ

et(ζv) = ζΘn(b,f)
v .

Proof. Consider the following commutative diagram.

K2n(OF,S)/l
k

��

⊕
v∈S ∂v// ⊕

v∈S K2n−1(kv)/l
k

��
K2n(OF,S ; Z/l

k)

⊕
v∈S ∂v// ⊕

v∈S K2n−1(kv; Z/l
k)
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The vertical arrows in the diagram come from the Bockstein exact sequence. It is
clear from the diagram that the inverse limit over k of the bottom horizontal arrow
gives the boundary map ∂F =

⊕
v∈S ∂v :

∂F : K2n(OF,S)l →
⊕

v

K2n−1(kv)l.

Now, the theorem follows by Theorems 4.10 and 4.11. �

In the next proposition we will construct a Stickelberger splitting map Γ which is
complementary to the map Λ constructed above.

(42) 0 −→ K2n(OF )l

i
−→
Γ
←−

K2n(F )l

∂F−→
Λ
←−

⊕

v

K2n−1(kv)l −→ 0.

The existence of Γ was suggested in 1988 by Christophe Soulé in a letter to the first
author and it is a direct consequence of the following module theoretic lemma.

Lemma 4.18. Let R be a commutative ring with 1 and let r ∈ R be fixed. Let

0 // A
ι // B

π // C // 0

be an exact sequence of R–modules. Then, the following are equivalent:

(1) There exists an R–module morphism Λ : C → B, such that π ◦Λ = r · idC .
(2) There exists an R–module morphism Γ : B → A, such that Γ ◦ ι = r · idA.

Moreover, if Λ and Γ exist, they can be chosen so that Γ ◦ Λ = 0.

Proof of Lemma. Assume that (1) holds. By the defining property of Λ, we have

(43) (Λ ◦ π)(−b) + rb ∈ Im(ι), ∀ b ∈ B.

We define Γ(b) := ι−1((Λ◦π)(−b)+ rb), for all b ∈ B, where ι−1(x) is the preimage
of x via ι, for all x ∈ Im(ι). One can check without difficulty that Γ is an R–module
morphism which satisfies

Γ ◦ ι = r · idA, Γ ◦ Λ = 0.

Now, assume that (2) holds. Let c ∈ C. Take b ∈ B, such that π(b) = c. Then,
by the defining property of Γ, one can check that the element (ι ◦ Γ)(−b) + rb ∈ B
is independent on the chosen b. For all c ∈ C, we define Λ(c) := (ι ◦ Γ)(−b) + rb,
where b ∈ B, such that π(b) = c. It is easily seen that the map Λ defined this way
is an R–module morphism and it satisfies

π ◦ Λ = r · idC , Γ ◦ Λ = 0.

�

Proposition 4.19. The existence of a map Λ satisfying the property (∂F ◦Λ)(ξv) =

ξ
Θn(b,f)
v is equivalent to the existence of a map Γ : K2n(F )l → K2n(OF )l with the

property (Γ ◦ i)(η) = ηΘn(b,f). Moreover, if they exist, the maps Λ and Γ can be

chosen so that Γ ◦ Λ = 0.

Proof. The proof of the Proposition follows directly from the above Lemma applied
to R := Z[G(F/K)], r := Θn(b, f) and Quillen’s localization exact sequence (42).

�
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Remark 4.20. From the proof of Lemma 4.18 it is clear that if one of the maps
Λ and Γ is given, then the other one can be chosen such that

r · idB = Λ ◦ π + i ◦ Γ.

Remark 4.21. Observe that the map Λ is defined in the same way for both cases
l ∤ n and l | n. If restricted to the particular case K = Q, our construction improves
upon that of [1]. In loc.cit., in the case l | n the map Λ was constructed only up to
a factor of lvl(n).

Analogously, there is a Stickelberger splitting map Γet which is complementary
to the map Λet such that the étale analogue of the Proposition 4.19 holds.

4.3. Annihilating div K2n(F )l. Now, let us give a set of immediate applications
of our construction of the Stickelberger splitting maps Λn. In what follows, if A ia
an abelian group, div A denotes its subgroup of divisible elements. The applications
which follow concern annihilation of the groups div K2n(F )l by higher Stickelberger
elements of the type proved in [1] in the case where the base field isQ. The difference
is that while [1] deals with abelian extensions F/Q, under certain restrictions if l | n,
we deal with abelian extensions F/K of an arbitrary totally real number field K
under no restrictive conditions. The desired annihilation result follows from the
following.

Lemma 4.22. With notations as in Lemma 4.18, assume that a map Λ exists.

Further, assume that C and A viewed as abelian groups satisfy div C = 0 and A
has finite exponent. Then, we have the following.

(1) div B ⊆ Im(ι).
(2) r annihilates div B.

Proof. Since any morphism maps divisible elements to divisible elements, we have
π(div B) = 0, by our assumption on C. This concludes the proof of (1).

Let x ∈ div B. Let m be the exponent of A and let b ∈ B, such that m · b = x.
Multiply (43) by m to conclude that

(Λ ◦ π)(−x) + r · x = 0.

Now, part (1) implies that π(x) = 0. Consequently, the last equality implies that
r · x = 0, which concludes the proof. �

Theorem 4.23. Let m > 0 be a natural number. Assume that the Stickelberger

elements Θm(b, fk) annihilate the groups K2m(OFk
)l for all k ≥ 1. Then the Stick-

elberger’s element Θn(b, f) annihilates the group div K2n(F )l for every n ≥ 1.

Proof. The proof is very similar to that of [Ba1, Cor. 1, p. 340]. Let us fix n ≥ 1.
Under our annihilation hypothesis, we have constructed a map Λ := Λn satisfying
the properties in Proposition 4.19 relative to the Quillen localization sequence (42).
Note that A := K2n(OF )l is finite and therefore it has a finite exponent. Also, note
that C :=

⊕
v K2n−1(kv)l is a direct sum of finite abelian groups and therefore

div C = 0. Consequently, the exact sequence (42) together with the map Λ and
element r := Θn(b, f) in the ring R := Z[G(F/K)] satisfy the hypotheses of Lemma
4.22. Therefore, we have

Θn(b, f) · div K2n(F )l = 0.

�
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Remark 4.24. Observe that we can restrict the map Λ to the lk–torsion part, for
any k ≥ 1. For any k ≫ 0, there is an exact sequence

0 −→ K2n(OF )[l
k] −→ K2n(F )[lk]

∂F−→
Λ
←−

⊕

v

K2n−1(kv)[l
k] −→ div(K2n(F )l) −→ 0

By Theorem 4.17, we know that ∂F ◦Λ is the multiplication by Θn(b, f). As pointed
out in the Introduction, this implies the annihilation of div (K2n(F )l) and conse-
quently gives a second proof for Theorem 4.23

Let us define F0 := F and:

Θn(b, f0) =

{ (∏
l∤f
l | l

(1− (l, F )−1N ln)
)
Θn(b, f) if l ∤ f

Θn(b, f) if l | f

Hence by the formula (13) we get

(44) ResFk+1/Fk
Θn(b, fk+1) = Θn(b, fk)

Hence by formula (44) we can define the element

(45) Θn(b, f∞) := lim
←−
k

Θn(b, fk) ∈ lim
←−
k

Zl[G(Fk/F )].

Corollary 4.25. Let m > 0 be a natural number. Assume that the Stickelberger

elements Θm(b, fk) annihilate the groups K2m(OFk
)l for all k ≥ 1. Then the Stick-

elberger element Θn(b, fk) annihilates the group div K2n(Fk)l for every k ≥ 0 and

every n ≥ 1. In particular Θn(b, f∞) annihilates the group lim
−→k

div K2n(Fk)l for

every n ≥ 1.

Proof. Follows immediately from Theorem 4.23. �

Theorem 4.26. Let F/K be an abelian CM extension of an arbitrary totally real

number field K and let l be an odd prime. If the Iwasawa µ–invariant µF,l associated

to F and l vanishes, then Θn(b, f) annihilates the group div(K2n(F )l), for all n ≥ 1
and all b coprime to wn+1(F )f l.

Proof. In [16] (see Theorem 6.11), it is shown that if µF,l = 0, then Θn(b, f)
annihilates Ket

2n(OF [1/l]), for all n ≥ 1 and all b as above. From the definition of
Iwasawa’s µ–invariant one concludes right away that if µF,l = 0, then µFk,l = 0,
for all k. Consequently, Θ1(b, fk) annihilates Ket

2 (OFk
[1/l]), for all k. Now, one

applies Tate’s Theorem 1.3 to conclude that Θ1(b, f) annihilates K2(OFk
)l, for all

k. Theorem 4.23 implies the desired result. �

Remark 4.27. It is a classical conjecture of Iwasawa that µF,l = 0, for all number
fields F and all primes l.

Corollary 4.28. Let F/Q be an abelian extensions of conductor f. Then Θn(b, f)
annihilates the group div K2n(F )l for all n ≥ 1 and all b coprime to wn+1(F )f l.

Proof. By a well known theorem of Ferrero-Washington and Sinnott, µF,l = 0 for
all fields F which are abelian extensions of Q and all l. Now, the Corollary is an
immediate consequence of the previous Theorem. �

Remark 4.29. Observe that the Corollary above strengthens Corollary 1, p. 340
of [1] in the case l |n.
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5. Constructing Euler systems out of Λ–elements

As mentioned in §4, in this section we construct Euler systems for the even K-
theory of CM abelian extensions of totally real number fields. We construct an
Euler system in the K–theory with coefficients. Then, by passing to a projective
limit, we obtain an Euler system in Quillen K–theory. Our constructions are quite
different from those in [3], where an Euler systems in the odd K–theory with finite
coefficients of CM abelian extensions of Q was described.

As above, we fix a finite abelian CM extension F/K of a totally real number
field of conductor f and fix a prime number l. We let L = l1 . . . lt be a product
of mutually distinct prime ideals of OK coprime to l f . We let FL := FKL, where
KL is the ray class field of K for the ideal L. Since F/K has conductor f the CM-
extension FL/K has conductor dividing Lf . As usual, we let FLlk := FL(µlk), for
every k ≥ 0.

Let us fix a prime v in OF sitting above a rational prime p 6= l. Let S := Sv be
the set consisting of all the primes of OF sitting above p or above l. For all L as
above and k ≥ 0, we fix primes wk(L) of OF

Llk
sitting above v, such that wk′ (L′)

sits above wk(L) whenever l
kL | lk

′

L′. For simplicity, we let v(L) := w0(L), for all
L as above. Also, if k is fixed, we let w(L) := wk(L), for all L as above.

Let us fix integers m > 0. For all L as above and all k ≥ 0, let Θm(bL, Lfk)
denote the m-th Stickelberger element for the integral ideal bL of OF , coprime to
Lf l, and the extension FLlk/K. As usual, we assume throughout that Θm(bL,Lfk)
annihilates K2m(OF

Llk
), for all L as above and all k ≥ 0.

By the surjectivity of the transfer maps for the K-theory of finite fields we can
fix generators ξwk(L),k of K2m−1(kwk(L))l, for all k ≥ 0 and L as above, such that

Nwk′(L)/wk(L)(ξwk′ (L),k′) = ξwk(L),k ,

whenever we have k ≤ k′.

Remark 5.1. Note that the cyclicity of the groups K2m−1(kwk(L))l and the sur-
jectivity of the appropriate transfer maps implies that the elements

(ξwk(L),k)k, (Nwk(L′)/wk(L)(ξwk(L′),k))k,

viewed inside of Zl–module lim
←−k

K2m−1(kwk(L))l, differ by a factor in Z×
l , for all L

and L′ as above, such that L|L′. Above, the projective limit is taken with respect
to the transfer maps.

Let us fix k ≥ 0. For any L as above, we have the localization exact sequence:

0 −→ K2m(OF
Llk

) −→ K2m(OF
Llk

, S)
∂
−→

⊕

v0∈S

⊕

w|v0

K2m−1(kw) −→ 0,

where the direct sum is taken with respect to all the primes w in OF
Llk

which

sit above primes v0 in S. Pick an element xw(L),k ∈ K2m(OF
Llk

,S)l, such that

∂(xw(L),k) = ξw(L),k. The following element:

(46) Λm(ξw(L),k) := x
Θm(bL,Lfk)
w(L),k

does not depend on the choice of xw(L),k since Θm(bL,Lfk) annihilatesK2m(OF
Llk

).
Observe that by construction we have the following equalities:
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(47) ∂F
Llk

(TrF
L′lk

/F
Llk

(
xw(L′),k

)
) = Nw(L′)/w(L)(∂F

L′lk

(
xw(L′),k

)
=

= Nw(L′)/w(L)(ξw(L′),k),

(48) Nw(L)/v(L)(Nw(L′)/w(L)(ξw(L′),k)) = Nv(L′)/v(L)(Nw(L′)/v(L′)(ξw(L′),k)) =

= Nv(L′)/v(L)(ξv(L′),0))

We choose the ideals bL in such a way so that they are coprime to lLf and

NbL′ ≡ NbL mod lk.

Then, the elements {Λm(ξw(L),k)}L form an Euler system in K-theory without
coefficients {K2m(OLlk,S)l}L. Namely, we have:

Proposition 5.2. If L′ = l′L, then the following equality holds:

(49) TrF
L′lk

/F
Llk

(Λm(ξw(L′),k)) = Λm(Nw(L′)/w(L)(ξw(L′),k))
1−N(l′)m(l′, F

Llk
)−1

.

Proof. The Proposition follows by (47) and Lemma 2.1. �

Let us fix an arbitrary integer n > 0. Next, we use the Euler system above to
construct Euler systems {λv(L)}L in the K–groups {K2n(OL,S)l}L. The general
idea is as follows. First, one constructs Euler Systems {λv(L),k}L in the K–theory

with coefficients {K2n(OL,S ,Z/l
k)}L, for all k > 0. Then one passes to a projective

limit with respect to k. The constructions, ideas and results developed in §4 play
a key role in what follows.

For every L as above and every k ≥ 0, we follow the ideas in §4 and define the
elements λv(L),k ∈ K2n(OFL,S; Z/l

k) by:

λv(L),k : = TrF
Llk

/FL
(x

Θm(bL,Lfk)
wk(L),k ∗ β∗n−m

k )Nb
n−m
L

γl =(50)

TrF
Llk

/FL
(Λm(ξwk(L),k) ∗ β

∗n−m
k )Nb

n−m
L

γl ,

where the operator γl ∈ Zl[G(F/K)] is given in Definition 4.6. The following
theorem lies at the heart of our construction of the Euler system for higher K-
groups of CM abelian extensions of arbitrary totally real number fields.

Theorem 5.3. For every k′ ≥ k and every L and L′ = Ll′ we have:

rk′/k(λv(L),k′ ) = λv(L),k

∂FL
(λv(L),k) = (NL(ξw(L),k ∗ β

∗n−m
k ))Θn(bL,fL)

TrF
L′/FL

(λv(L′),k) = (λ′
v(L),k)

1−N(l′)n(l′, FL)
−1

,

where NL := Trkw(L)/kv(L)
and λ

′
v(L),k is defined by

λ
′
v(L),k := TrF

Llk
/FL

(Λm(Nwk(L′)/wk(L)(ξwk(L′),k)) ∗ β
∗n−m
k )Nb

n−m
L

γl .
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Proof. The first formula follows by Lemma 4.9. The second formula follows by
Theorem 4.10. Let us prove the Euler System property (the third formula in the
statement of the Theorem.) We apply Lemma 2.1 and definition (50):

TrF
L′/FL

(λv(L′),k) = TrF
L′/FL

TrF
L′lk

/F
L′ (x

Θm(b
L′ , fkL

′)
w(L′),k ∗ β∗n−m

k )Nb
n−mγl =

TrF
Llk

/FL
TrF

L′lk
/F

Llk
(x

Θm(b
L′ , fkL

′)
w(L′),k ∗ β∗n−m

k )Nb
n−mγl =

TrF
Llk

/FL
(TrF

L′lk
/F

Llk
x
Θm(b

L′ , fkL
′)

w(L′),k ∗ β∗n−m
k )Nb

n−mγl =

TrF
Llk

/FL
(TrF

L′lk
/F

Llk

(
xw(L′),k

)Θm(b
L′ , fkL

′)
∗ β∗n−m

k )Nb
n−mγl =

TrF
Llk

/FL
(TrF

L′lk
/F

Llk

(
xw(L′),k

)ResK
fkL′/KfkL

Θm(b
L′ , fkL

′)
∗ β∗n−m

k )Nb
n−mγl =

TrF
Llk

/FL
(TrF

L′lk
/F

Llk

(
xw(L′),k

)(1−(l′, F
Llk

)−1N(l′)m
)

Θm(bL, fkL)
∗ β∗n−m

k )Nb
n−mγl =

TrF
Llk

/FL
(TrF

L′lk
/F

Llk

(
xw(L′),k

) Θm(bL, fkL)
∗ β∗n−m

k )NbL
n−mγl

(
1−(l′, FL)−1N(l′)n)

)
=

(λ′
v(L),k)

1−N(l′)n(l′, FL)
−1

.

The last equality is a direct consequence of equalities (47) and (48). �

Now, let b be a fixed ideal in OK , coprime to f l. Consider all L as above which
are coprime to lbf . Naturally, we can choose bL := b, for all such L. These choices
and the results of §4 permit us to define the elements λv(L) ∈ K2n(OFL,S)l and
ξv(L) ∈ K2n−1(kv(L))l as follows.

Definition 5.4. Let λv(L) ∈ K2n(OFL,S)l be the element corresponding to

(λv(L),lk)k ∈ lim
←−
k

K2n(OFL,S; Z/l
k)

via the isomorphism (40) for the ring OFL,S .

Definition 5.5. Let ξv(L) ∈ K2n−1(kv(L))l be the element corresponding to

(NL(ξw(L),k ∗ β
∗n−m
k ))k ∈ lim

←−
k

K2n−1(kv(L); Z/l
k)

via the isomorphism (41) for the finite field kv(L).

Remark 5.6. Note that Λ(ξv(L)) = λv(L) (see Remark 4.15.)

The next result shows that the elements {λv(L)}L provide an Euler System for
the K-theory without coefficients {K2n(OFL,S)l}L.

Theorem 5.7. For every L and L′ as above, such that L′ = Ll′, we have the

following equalities:

(51) ∂FL
(Λ(ξv(L))) = ξ

Θn(b,Lf)
v(L)

(52) TrF
L′/FL

(Λ(ξv(L′))) = Λ(Nv(L′)/v(L)(ξv(L′)))
1−N(l′)n(l′, FL)

Proof. This follows directly from Theorem 5.3. �
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Remark 5.8. It is easy to see that one can construct Euler systems for étale
K-theory in a similar manner.

Remark 5.9. In our upcoming work, we will use the Euler systems constructed
above to investigate the structure of the group of divisible elements divK2n(F )l
inside K2n(F )l. The structure of divK2n(F )l is of principal interest vis a vis some
classical conjectures in algebraic number theory, as explained in the introduction.
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